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Abstract—Receiver diversity combining methods play a key
role in combating the detrimental effects of fading in wireless
communication and other applications. Commonly used linear
diversity combining methods include maximal-ratio combining,
equal-gain combining and antenna selection. A novel linear
combining method is proposed where a universal, i.e., channel
independent, orthogonal dimension-reducing space-time transfor-
mation is applied prior to quantization of the signals. The scheme
may be considered as the counterpart of Alamouti modulation,
and more generally of orthogonal space-time block codes.

I. INTRODUCTION

In wireless communication, diversity methods play a central

role in combating the detrimental effects of severe channel

variation (fading). Of the many techniques that have been

developed over the years with this goal, an important class

involves the use of multiple receive antennas. With sufficient

separation between the antennas, each antenna may be viewed

as a branch receiving the transmitted signal multiplied by

an approximately independent fading coefficient. Diversity is

achieved as the probability that the signal is severely affected

by fading on all branches simultaneously is greatly reduced.

The number of such (roughly) independent branches is com-

monly referred to as the diversity order. A classical survey of

receive diversity techniques is [1]. A more recent account that

also considers multiple-input multiple-output channels is [2].

We introduce a new linear diversity-combining scheme uti-

lizing dimension-reducing orthogonal space-time block codes.

The key difference between the proposed scheme and tradi-

tional linear combining schemes is that it is universal. That

is, the combining weights (in the proposed scheme, the space-

time dimension-reducing transformation) do not depend on the

channel realization.

To understand the potential benefits of the contribution,

consider a receiver as depicted in Figure 1. A key feature

of modern device architectures is the decomposition of the

unit into separate functional blocks (that can be located at

different physical locations, i.e., distributed processing). These

blocks are connected by interfaces and a major design goal is

to reduce the bandwidth between different blocks.

The proposed scheme can assist in the interface from the

analog domain to the digital one, simplifying analog-to-digital

conversion (ADC) and thus also reducing power consumption.

This application is described in Section III. The scheme can

also assist in reducing the bit rate of the digital interface

between different digital blocks. For example, as described

in Section IV, in a centralized (cloud) radio access network

setting, this reduction will be in the fronthaul links between

the relays (remote radio head units) and the central (cloud)

processing unit.

II. DESCRIPTION OF THE SCHEME FOR TWO RECEIVE

ANTENNAS

Consider a 2 × 1 SIMO channel, with channel coefficients

h1 and h2, as depicted in Figure 1. The signal received at
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Fig. 1. Basic scenario: receiver architecture for a 2× 1 SIMO channel.

antenna i = 1, 2, at discrete time t, is

si(t) = hix(t) + ni(t). (1)

We assume that the noise ni(t) is i.i.d. over space and time

with samples that are circularly-symmetric complex Gaussian

random variables with unit variance. We assume the transmit-

ted symbols are subject to the power constraint E(|x|2) = P .

The scheme works on batches of two time instances and for

our purposes, it will suffice to describe it for time instances

t = 1, 2. Let us stack the four complex samples received over

T = 2 time instances, two over each antenna, into an 8 × 1
real vector:

s = [s1R(1)s1I(1)s2R(1)s2I(1)s1R(2)s1I(2)s2R(2)s2I(2)]
T ,
(2)

where xR and xI denote the real and imaginary parts of a

complex number x. We similarly define the stacked noise

vector n. Likewise, we define

x = [xR(1)xI(1)xR(2)xI(2)]
T . (3)

Next, we form a 4-dimensional real vector y by applying

to the vector s the transformation y = Gs where

G =
1√
2







1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 −1
0 0 1 0 −1 0 0 0
0 0 0 1 0 1 0 0






. (4)
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Note that unlike conventional linear diversity-combining

schemes, here the combining matrix G is universal, i.e., it

does not depend on the channel coefficients.

Remark 1: We note that the transpose of G is precisely

the description of the linear operation performed by Alamouti

modulation [3] when expressed over the reals.

It is readily shown that the following holds

y =
‖h‖√
2
U(h1, h2)x+Gn

=
‖h‖√
2
U(h1, h2)x+ n′, (5)

where

U(h1, h2) =
1

‖h‖







h1R −h1I h2R −h2I

h1I h1R −h2I −h2R

h2R −h2I −h1R h1I

h2I h2R h1I hR1






. (6)

A key observation is that U(h1, h2) is an orthonormal matrix

for any h1, h2:

UH(h1, h2)U(h1, h2) = I, (7)

where I is the identity matrix. Further, since the rows of G

are orthonormal, it follows that n′ is i.i.d. and Gaussian with

variance 1/2.

We may reconstruct (up to additive noise) the original

samples by applying

x̂ = UH(h1, h2) · y

=
‖h‖√
2
x+ n′′ (8)

where n′′ is also i.i.d. Gaussian variance 1/2.

Since the dimension (over the reals) of y is four rather than

eight, as is the dimension of the received signal s, we obtained

a universal dimension-reducing linear-combining scheme.

III. APPLICATION TO ANALOG-TO-DIGITAL CONVERSION

In this section we demonstrate the applicability of the

scheme to analog-to-digital conversion for power-limited re-

ceivers of narrowband signals.

The proposed method may be used to achieve maximal

diversity order with a single radio-frequency (RF) chain and

ADC, and without requiring selection and switching mecha-

nisms that come at substantial analog hardware complexities;

see discussion of hardware aspects in [2].

Consider again the scenario of a 2 × 1 SIMO system as

depicted in Figure 1 and described in the previous section. We

note that as the fading coefficients are constants (rather than

impulse responses), the model assumed is that of frequency-

flat fading.

The best performance may be attained by quantizing (at

sufficient resolution) the output of each antenna and then using

maximum-ratio combining (MRC). Applying MRC amounts

to forming

yMRC =
1

‖h‖
[
h∗
1 h∗

2

]
[
s1
s2

]

=
‖h1‖2 + ‖h2‖2

‖h‖ x+
h∗
1n1 + h∗

2n2

‖h‖
= ‖h‖x+ n, (9)

where n is white and Gaussian with unit variance. As the

variation of ‖h‖ is much smaller than that of either h1 or

h2, diversity is attained. When h1 and h2 are independent, we

obtain a diversity order of 2. The precise performance of MRC

under independent Rayleigh fading is well-known and may be

found, e.g., in [1]. The major downside of such a system is

that two RF chains and ADCs are needed.

A classic alternative to MRC that requires only one RF

chain is the method of antenna selection or “selection com-

bining”. Here, rather than choosing the antenna arbitrarily,

we choose the one with the higher SNR. Thus the effective

channel becomes

ySC = max(|h1|, |h2|)x+ n, (10)

where again n is Gaussian noise of unit variance. While

the performance does not reach that of MRC, it does at-

tain a diversity order of 2. The precise performance under

independent Rayleigh fading of selection combining is well-

known and may be found, e.g., in [1]. We note that selection

combining requires analog power measurement and switching

mechanisms.
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Fig. 2. Proposed receiver front end employing a universal orthogonal space-
time diversity transformation.

The space-time diversity combining method described in

the previous section may be applied to the problem of ADC

as follows. Since the processing matrix G is fixed for all

channels, it is possible to apply in the analog domain (i.e.,

prior to quantization), requiring only delay, summation and

negation elements.

As depicted in Figure 2, the received signals are first passed

through the dimension-reducing transformation G to obtain

the vector y = [y1, y2, y3, y4]T as defined in (5) and (6). Then,

a (component-wise) scalar uniform quantizer Q(·) is applied

to y to obtain yq = Q(y). We denote the quantization error

vector by

e = y − yq

= y −Q(y). (11)

The sequence of quantized samples is used to

reconstruct an estimation of the source vector
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x̂ = [x̂R(1), x̂I(1), x̂R(2), x̂I(2)]
T by applying the

transformation:

x̂ = U(h1, h2)
Hyq. (12)

Using (5) and (11), we have

x̂ = U(h1, h2)
H(y − e) (13)

= U(h1, h2)
H

(‖h‖√
2
U(h1, h2)x+ n′ − e

)

(14)

=
‖h‖√
2
x+ n′′ − e′, (15)

where n′′ has the same distribution as n.

As for the quantization error e and its transformed variant

e′, we may invoke the standard assumption, that may be

justified using subtractive dithered quantization, that it is

independent of the signal (and hence of x) and is white (i.e.,

its covariance matrix is the scaled identity).

We conclude that the input/output relationship of the pro-

posed diversity combiner is identical to that of MRC, except

for a power loss of a factor of two. In other words, we

attain full diversity but no array gain, precisely as in the case

of Alamouti space-time diversity transmission. In comparison

with selection combining (without taking into account imple-

mentation losses), there a loss in the achieved SNR whereas

an advantage is that no estimation of channel quality in the

analog front end nor switching is required.

A comparison of the performance of the proposed method

is shown in Figure 3 that plots the bit error rate of all three

methods for uncoded QPSK transmission over a 2×1 Rayleigh

fading channel.
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Fig. 3. Symbol error rate of the proposed space-time diversity scheme and
comparison with alternatives for uncoded QPSK over a 2×1 Rayleigh fading
channel.

IV. APPLICATION TO “DUMB” RELAYING FOR

MULTI-USER DETECTION AT A REMOTE DESTINATION

Another potential application of the proposed scheme is to

be employed as part of a “dumb” relay. By a “dumb” relay we

mean a relay (equipped with multiple antennas) that can only

apply channel-independent linear processing to the output of

the antennas, followed by scalar quantization, the output of

which is fed into a rate-constrained bit pipe.1

Unlike in the previous section, the scheme we present now

operates purely in the digital domain. A further difference

is that we no longer assume frequency-flat fading. Rather,

we will assume that after analog-to-digital conversion, a DFT

operation is applied, so that we are working in the frequency

domain. In other words, the static channel we will consider is

to be understood to apply to a single tone. The “time” index

t will correspondingly refer to subsequent uses of the same

tone, or in a practical setting could apply to adjacent tones as

these typically have very similar channel coefficients.

We demonstrate the application to “dumb” relaying in the

context of the system described in Figure 4. Here, two single-

antenna users communicate with a central receiver via two

relays, each equipped with two antennas, where the medium

between the users and relays is a Rayleigh fading wireless

channel, whereas the relays are connected to the central

receiver via bit pipes. We further assume that the operation

performed at the central decoder is also “dumb” in the sense

that only linear processing is performed prior to applying

channel decoding of the users’ codes.

The signal received at relay i = 1, 2 and antenna j = 1, 2
is given by

sij(t) = hi
j1 · x1(t) + hi

j2 · x2(t) + ni
j(t), (16)

and the corresponding channel matrix of relay i is

Hi =

[
hi
11 hi

12

hi
21 hi

22

]

. (17)
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b bits

b bits
space-time
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H1

H2

Fig. 4. Two-user virtual MIMO system formed by two two-antenna relays
connected to a receiver via rate-constrained fronthaul links.

The question now arises as to how best to utilize the finite

number of bits available per sample in quantizing the output

of the two antennas. Note that not only do MRC and selection

diversity depend on the use of channel state information

(which is precluded by the definition of a “dumb” relay),

due to the distributed nature of the problem, both MRC and

1This definition is similar to the definition of an instantaneous relay (see,
e.g., [4] and [5]), with the additional requirement of linearity while allowing
a small delay at the relay.

2018 IEEE International Symposium on Information Theory (ISIT)

318



selection combining are also ineffective as the base station is

interested in recovering both signals.

We now demonstrate that while keeping the bit rate fixed,

one can benefit (albeit, not to the extent as with full CSI) from

additional antennas at the relays even without exploiting any

channel state information at the relays. Specifically, each relay

can provide diversity gains to both users using the proposed

combining method, precisely since it makes no use of CSI at

the combining stage, rather only in the reconstruction stage.

Assuming both relays use the proposed space-time diversity

combining scheme, the signal passed to the cloud from relay

i is given by

yi = U(hi
11, h

i
21)x1 +U(hi

12, h
i
22)x2 + n′i,

where xj represents the real representation of the signal

transmitted by user j over the two time instances according to

the notation in (3). Thus, at the cloud we obtain the effective

channel
[

y1

y2

]

=

[
U(h1

11, h
1
12) U(h1

21, h
1
22)

U(h2
11, h

2
12) U(h2

21, h
2
22)

]

︸ ︷︷ ︸

G

[
x1

x2

]

+

[
n′1

n′2

]

.

Note that the effective matrix G has the desirable property

that each of the four submatrices is orthogonal. Thus, it is

expected that applying linear equalization to the effective

channel followed by a slicer (or in general, a decoder) will

exhibit some diversity gain.

The performance of the proposed scheme is demonstrated

in Figure 5 for a simple scenario where the users transmit

uncoded 16-QAM symbols. At the central receiver linear

MMSE equalization is applied, followed by a slicer. As a

baseline for comparison, we consider a relay that quantizes

and forwards the output of an arbitrary relay; or alternatively, a

relay that quantizes and forwards the output of both relays but

with half the number of bits allocated to each quantizer. 2 The

latter is referred to as “no combining” in Figure 5. Substantial

improvement may be seen with respect to the baseline schemes

when a low bit error rate is desired, where we have considered

quantization rates of 4, 6 and 8 bits per sample for each relay.3

V. EXTENSIONS TO MORE THAN TWO ANTENNAS

As in the case of space-time modulation for channel coding,

extension of the scheme to more receive antennas is possible,

albeit with some loss.

A natural approach is to try utilizing the theory of orthogo-

nal designs. It should be noted however that it is well known

that the decoding delay (number of time instances stacked

together) roughly grows exponentially with the number of

antennas. Another possible avenue is to try to follow the

approach of quasi-orthogonal space-time codes as developed

in [6]–[8]. We demonstrate both approaches.

2Since we assume “dumb” relays, the quantization of the inputs to the
receiver was performed using a fixed (SNR independent) loading factor, taken
as three times the standard deviation of the noise-free input to the quantizer.

3As the gain are more pronounced at high SNR, we chose to demonstrate
the performance of 16-QAM rather than QPSK transmission.
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Fig. 5. Symbol error rate achieved using “dumb” relaying using the proposed
diversity-combing scheme and comparison to baseline relaying schemes for
uncoded 16-QAM transmission over a Rayleigh fading environment, where
the receiver employs MMSE equalization.

Attempting to apply orthogonal designs, one immediately

confronts a basic obstacle due to the fact that rate-1 complex

orthogonal designs do not exist beyond the case of two

antennas [9]. We next demonstrate the problem that arises and

also show how it may be resolved by judiciously combining

balanced rate-1/2 orthogonal designs [10] (which include the

four basic OSTBCs described in [9] for 2-8 antennas) with

repeated quantization used in conjunction with multiplicative

dithering. For the sake of concreteness and ease of exposition,

we demonstrate the method for the case of a SIMO system

with M = 4 receive antennas.

The received signals are given by (1) where now

i = 1, . . . ,M (with M = 4). We proceed by stacking T = 8
time instances of the received signal from the 4 antennas and

build an effective real-valued vector by decomposing each

entry into its real and imaginary components, just as is done

in (2). This yields for M = 4, a vector s of dimension

2× 4× 8 = 64.

By reinterpreting the rate-1/2 orthogonal design of 4 trans-

mit antennas (see [9]), we arrive at a 8 × 64 transformation

matrix G.4 Next, we form a 8×1 real vector y by applying to

the effective received vector s, formed in the manner described

in (2), the transformation y = Gs.

It can be shown that the following holds

y =

√
2‖h‖√
8

U(h1, h2, h3, h4)x+Un

=
‖h‖
2

U(h1, h2, h3, h4)x+ n′, (18)

where U(h1, h2, h3, h4) is a unitary matrix.5 Here, the vector

x is the 16-dimensional real representation of the transmitted

signal over T = 8 time instances, formed analogously to (3).

4The specific form of G can be found in Equation (36) in [11].
5The specific form of U(h1, h2, h3, h4) is given in Equation (29) in [11].
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We note that rows of U(h1, h2, h3, h4) are orthogonal for

any values of h1, . . . , h4. It follows that n′ is white (and

Gaussian with variance 1/2).

The problem with using a non-rate 1 orthogonal design

now becomes clear. Unlike U(h1, h2) (see (6)) which is

square, U(h1, h2, h3, h4) is non-square and hence is non-

invertible. We overcome this obstacle by passing the same

observation vector s via a “dithered” version of G, such that

another set of 8 mutually orthogonal measurement rows is

attained. Specifically, let us define a 4-dimensional vector

d = (d1, d2, d3, d4) where di are complex numbers of unit

magnitude (pure phases). We form a dithered version of the

antenna outputs as

s̃i(t) = di · si(t), (19)

where di does not depend on t. We assume that the di are

drawn at random as i.i.d. uniform phases.

We may associate with s̃i(t), t = 1, . . . , T = 8, the

effective 64-dimensional real vector s̃. Next, we obtain another

8-dimensional real vector ũ by applying to the vector s̃ the

transformation ỹ = Gs̃. We therefore obtain

ỹ =
‖h‖
2

U(d1h1, d2h2, d3h3, d4h4)x+ n′′, (20)

where n′′ is distributed as n′.

Note that the dithers drawn implicitly (via (19)) may be

absorbed in G, thus defining a “dithered” combining matrix

Gdith. Combining (18) and (20), we have
[

y

ỹ

]

︸ ︷︷ ︸

yeff,dith

=
‖h‖
2

[
U(h1, h2, h3, h4)

U(d1h1, d2h2, d3h3, d4h4)

]

︸ ︷︷ ︸

Fdith

x+

[
n′

n′′

]

.

(21)

Finally, we apply component-wise quantization to obtain

yq = Q(yeff,dith). (22)

We may then recover an estimate of x by applying the inverse

of F to y or a linear MMSE estimator.

As mentioned above, another approach to extend the basic

scheme to more antennas is to borrow ideas from quasi-

orthogonal space-time codes. As an example for a quasi-

orthogonal space-time linear combining matrix, we construct a

matrix Gquasi by taking half of the columns of G, specifically

columns 1 − 16 and 49 − 64, scaling by
√
2 to maintain

orthonormality. This results in

yeff,quasi =
‖h‖
2

Uquasi(h1, h2, h3, h4)
︸ ︷︷ ︸

Fquasi

x+ n′ (23)

where Uquasi(h1, h2, h3, h4) is given by Equation (35) in [11].

We tested the performance attained with both combining

matrices in the scenario considered in Section III. Specifically,

Figure 6 depicts the performance achieved for uncoded QPSK

transmission when using different linear-combining schemes,

for the case Rayleigh fading 4× 1 SIMO channel.

First, we observe that both Gdith and Gquasi achieve

similar performance. Note, however, that Gquasi utilizes four

consecutive symbols rather than eight and hence induces less

latency. On the other hand, the construction of Gdith can be

readily extended to more antennas.

We further observe that as both variants of space-time

diversity combining do not achieve orthogonality, the gap

from optimal combining (MRC) is larger. Optimal antenna

selection has a gap of 3.5 dB from MRC. Yet as the number

of antennas increases, the complexity of performing optimal

selection increases as well.
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Fig. 6. Symbol error rate for uncoded QPSK transmission over a 4 × 1
Rayleigh fading channel with reception employing the proposed space-time
diversity combining scheme, using Gdith and Gquasi, and comparison with
alternatives.
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